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ABSTRACT 
This report introduces hybrid analog-digital com- 
puter systems suitable for high-speed Monte-Carlo 
studies and suggests methods for further reducing 
the computing time, such as sequential estimation 
and a number of variance-reducing techniques. shift- 
register-genera ted pseudo-random-noise is especially 
convenient for many hybrid analog-digital computa- 
tions. Applications to the solution of partial differ- 
ential equations and to random-search optimization 
are outlined. 

1 NTRO D U CT IO N 
1. Survey 

The repetitive-analog-computer Monte-Carlo 
method, originally developed by Hall, Van der Velde, 
and others at MIT, has come of age with the advent 
of fast hybrid analog-digital computer systems which 
permit very convenient digital accumulation of sta- 
tistics taken over thousands of fast analog-computer 
runs (figurel).The resultant hybrid-computer Monte- 
Carlo method is, for practical purposes, the only 
method for studies of really complex nonlinear dy- 
namic systems with random inputs, initial condi- 
tions, or parameters. It is interesting to note that 
hybrid-computer averaging operations usually re- 
quire relatively few bits in the analog-to-digital con- 
verters, since quantization errors tend to average 
O U ~ . ~ ~ . ~ ~  Another interesting development is the use 
of hybrid analog-digital pseudo-random-noise gen- 
erators (shift-register sequence generators) instead 
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Figure 1 -The hybrld-computer Monte-Carlo technique Successive analog-computer solutions x(t), y ( t )  are sampled, and stattstlcs 
are computed with hybrid analog-digital computing devices. 

of random-noise  generator^.*^^*^^^ It is  the purpose of  
this report to scan special computing methods and 
applications destined to increase the importance of 
hybrid-computer random-process simulation. Hy- 
brid-computer circuits really suitable for fast sta- 
tistical computation are still relatively new (section 
2) ,  promising techniques are as yet untried, and many 
existing results are derived from feasibility studies 
rather than from actual long-term computing expe- 
rience. A number of interesting problems invite fur- 
ther theoretical and experimental research. 

The 50-cps to 1,000-cps iteration rates of modern 
iterative differential analyzers can generate large sta- 
tistical samples quickly, but intuitive interpretation 
by a human operator, as well as automatic cross- 
plotting and optimization of statistics, places a prem- 
ium on still faster computation. Hence, we should 
like to make sample sizes as small as practical for 
acceptable statistical errors and confidence levels. 

Sample-size reduction is, of course, doubly impor- 
tant i f  computing accuracy requires slower analog 
and/or digital computation. Theoretical prediction 
of estimate variances, and thus of sample-size re- 
quirements, is  practically impossible in most appli- 
cations, so that we recommend following the ex- 
ample of classical statisticians in estimating sample 
variances or other measures of dispersion concur- 
rently with estimate computation. We can, then, 
form an idea of the confidence levels corresponding 
to given accuracy requirements; we may, in fact, 
terminate data accumulation when a certain confi- 
dence level i s  reached (sequential estimation, sec- 
tions 3 and 4). An additional possibility, also derived 
from classical experiment-design methods, i s  the re- 
duction of  estimate variances through the use of 
“doctored” samples designed to represent the ideal 
theoretical ensemble more accurately than a sample 
picked truly at random (section 5). 
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Figure 2 - ASTRAC II console. All analog computing elements other than coefficient potentiometers plug directly into the rear 
of the shielded analog patchbay. 

2. Fast analog-hybrid computation. The ASTRAC I I  
Sy~tem.'-*~*39 
Every analog computer capable of repetitive opera- 

tion can be adapted to statistical computations. But 
very high computing speed i s  desirable. The essential 
reason for ultrafast computation is not just the sheer 
mass of statistical data required, but the intuitive in- 
sight we gain by realizing the effects of system and 
parameter changes on statistics almost instantan- 
eously. To simulate a dynamical system, say a control 
system, one thousand times per second, we must 
solve one to 20 linear or nonlinear differential equa- 
tions once every millisecond and then reset the an- 
alog computer for the following run within 10 to 
100 psec. We require not only analog computing ele- 
ments (summers, integrators, multipliers, etc.) ca- 
pable of operating on 1- to 1 0 0 - K ~  signals with 
acceptable errors, but also integrator, track-hold, 
and analog-comparator timing within 20 to 100 nsec. 

To meet such specifications, the University of Ari- 
zona's ASTRAC I I  iterative differential analyzer (fig- 
ure 2)* employs ~ I O V  transistor amplifiers with a 
unity-gain bandwidth beyond 20 Mc and extremely 
low computing impedances. Summing-resistor values 
are 5K and I K ,  as compared to the 1M and 100K 
resistors employed in "slow" analog computers. In 
addition, al l  amplifiers, multipliers, etc. are plugged 
directly into the rear of a shielded patchbay, while 
diode-function-generator networks plug into the 
storable problem boards. This system eliminates 
signal-wiring capacitances and crosstalk. Table 1 sum- 
marizes ASTRAC I I  performance. 

'ASTRAC stands for Arizona Statistical Repetitive Analog Com- 
puter. ASTRAC I was a vacuum-tube predecessorlJ1 of the all- 
solid-state ASTRAC II. 
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Table 1 - ASTRAC II performance datal&-18-20 

r in TRACK, <O.S% (0.3') 

olding error, 5;0.1% of half-scale in 

at 

Chopper-stabilized; 
e120 nsec 
Static hysteresis, f15 mv 
Drift, <25 p/ "C 

ASTRAC I I  employs digital circuits for iteration 
control and statistics accumulation. Integrator and 
track-hold mode control, comparator outputs, an- 
alog switches, and free logic elements are terminated 
in a control patchbay. A digital control panel permits 

ANALOG HYBRID COMPUTER SEtW 
(PATCHED PROGRAM) 

the operator to control repetition rate, computer-run 
length, readout timing, and sample sizes for statisti- 
cal  computation^.'"^^^ A resettable 25-bit shift-register 
pseudo-random-noise generator" can produce up to 
four digital or analog outputs and has its own small 
patchbay with removable patchboards. Another small 
patchbay controls a packaged parameter optimizer 
with a variety of optimization strategies (see also 
section 7). 

ASTRAC II also has built-in ana/og/digital circuits 
for computing averages, mean squares and proba- 
bility estimates, but the ideal way to process sta- 
tistical data obtained from fast analog-computer 
experiments i s  with a small stored-program digital 
computer in the $10-20,000-class (e.g., Digital Equip- 
ment Corporation PDP 8 or Computer Control Cor- 
poration DDP116), as shown in figure 3. Digital pro- 
grams are conveniently stored on punched tape. 
Digital data processing not only yields several esti- 
mates (e.g., mean value, mean square, and amplitude 
distribution) from each sample, but also permits 
more sophisticated methods of sequential estima- 
tion (section 3). Since sampling, data conversion, 
and digital operations repeat only once or twice per 
analog-computer run, there are no stringent speed 
requirements on linkage and digital computer. The 
resulting hybrid system i s  a much happier (and less 
expensive) combination than those now commonly 
employed for combined analog-digital simulation. 

Figure 3 -This example illustrates the possibilities of combining an ASTRAC Il-type iterative analog computer with a small stored- 
program digital data proces5or. Analog computing elements produce successive samples of the squared-error time average <ke2(l)>= 

=('/"I ke2((t) dr for a simulated control system with random input and noise. The digital computer finds successive values of the 
0 " 

sample average <kee'(t)>T =(l/n) 2 for n = 100 to 10,000 computer runs and changes control-system parameters so as 

optimize the sample average. Note that each analogidigital and digitaVanalog conversion and digital-computation sequence is re- 
quired only once per analog-computer run. 

T 

L= 1 
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'/(it) FROM REPETITIVE 
ANALOG COMPUTER 

Figure 4a - Analog computation of confidence-interval width for 
a normal-random-sample average with preset sample size n and 
sampling rate. The confidence-interval-meter reading is propor- 
tional to an EWP (exponentially-weighted-past) average approxi- 
mation I f - f!. The time constants RICl, R,C, must be matched 
to repetition rate and sample size. 

SOME SPECIAL MEASUREMENT AND SAMPLING 
TECHNIQUES FOR STATISTICAL SIMULATION 
3. Confidence-interval measurement and 

sequential estimation 
(a) Random-sample averages from approximately 

Gaussian data 
Consider the estimation of an ensemble average 

1 "  
E f by the sample average r= - 
over a random sample (If, 2f,. . . ,"O obtained in n 
computer runs. To gauge the sample size n required 
for a given accuracy and confidence let us 
assume that the random variable f is at least approx- 
imately Gaussian; if necessary, we wil l further ap- 
proximate this condition by preaveraging (section 4). 
For a normal (Gaussjan) random sample, symmetrical 
confidence limits f 2 d for E { f }  are defined bp8 

k = 1  

d= t I - a l 2  4- (1 1 
n - I  

where tl-m,2 i s  found from a t-distribution table with 
n - 1 degrees of freedom for each given confidence 
level 1 -a. To obtain either the half-width d of a 
confidence interval for given a or the confidence 
level 1 - (Y for a given acceptable error d, we must 
measure the sample variance (f-f)', the sample 
standard deviation d(f - f j 2 ,  or, if this is easier, the 
sample mean absolute deviation I f - concurrently 
with the sample average 7; note that 

I I -  

1, E { [ f - € { f } I 2 } = . \ I ~ E {  I f - E { f } ( }  (2) 
2 

for normal random samples, so that it may be per- 
missible to employ the approximate relation 

for n > 30. Confidence-interval estimation need not 
be accurate, since d is  usually at most a few percent 
of the sample range. 

For a preset sample size n, equation (1) permits 
us to compute and display either d or a from meas- 
ured values of (f - TI' or I f  - 71. Figure 4a shows 
the circuit of a simple "confidence-interval meter," 

which may be considered as an accessory for a 
sample-averaging computer. A more sophisticated 
approach is to compute the sample variance (f - f i 2  
for each successive value of n (or, say, for every 10th 
n), and to terminate data-taking as soon as 

for preset values of d and (Y (sequential estimation). 
Sequential estimation i s  most convenient with a 

digital statistics computer. Computation of 

can utilize the recurrence relations 
" 

We note that fixed-point computation of ?=I/R 

2 'f or with small 12- or 16-bit digital computers 

will, in any case, require n divisions by n (or rescaling) 
to prevent accumulator overloads, so that the form- 
ula (6) does not add much extra cost or computing 
time. 

Continuous analog computation of the finite-time 
averages t 

<f(t)>,=+Jf(t)dt s 2 ( t ) =  <[f(t) - <f(t)>,I'>>, 

=-Jif(t) - <f(t)>,I2dt (7) 

k = l  

t 
n 1 

t 
0 

i s  similarly obtainable through solution of the differ- 
ential equations 

d 1 
dt t 
- <f(t)>,=-[f(t) - <f(t)>,l 

for < f ( t ) > ,  and sz(t). Division by t=O can be im- 
plemented by a steepest-descent division loop,39 or 
computation can be started at t = t ,  with the initial 
conditions <f(t)>,,=f(t,), s2(t,)=O; the resulting 
error wil l be small for t ,  < < t. 

-5- 



(b) Probability measurements 
Confidence intervals for probability measurements 

from random samples are easily derived from the 
binomial distribution. For given sample size n and 
confidence level 1 - (Y, the confidence-interval width 
for the unknown probability is  a function of the esti- 
mate (statistical relative frequency) itself.42 Sequen- 
tial estimation of probabilities is, again, conveniently 
implemented with a small digital computer; figure 4b 
shows a simple analog confidence-interval meter 
suitable for use with hybrid-computer amplitude- 
d is  t r i b u t ion analyzers. 

4. Pre-averaging methods 
Confidence-interval measurements and sequential 

estimation based on the assumption of approximately 
Gaussian data become much more generally applic- 
able if averages over a random sample If, 'f, . . . ,"fare 
compu.ted as samples over "pre-averages," i.e. 

- I  
f=-('f + ?f + . . . +"f) 

n 

1 
+;(rn+lf + m+2f + . . . + 2mf) + . . .I 

1 
m 

The set of pre-averages - ( I f f  *f + . . . + "f), 
1 ( m + l f  + m+zf  +. . . +'"f),. . . 
m 

very often becomes a useful approximation to a 
normal sample of size n lm;  m = 8 has proved to be 
a practical choice." Note that pre-averaging in ac- 
cordance with equation_ (9) wil l not affect the value 
of our sample average f, but will change the sample 
size together with the sample variance or other dis- 
persion measures used for confidence-level estima- 
tion (see also the note at the end of this article). 

Computation of pre-averages and dispersion meas- 
ures is, again, most conveniently accomplished i f  a 
stored-program digital computer is  available for data 
processing. As an alternative, the track-hold circuits 
used for random-process sampling in hybrid com- 
puters can implement pre-averaging (track-hold ac- 
cumulator, reference 39). 

5 .  Variance reduction by special sampling techniques 
In principle, every Monte-Carlo computation may 

be considered as the estimation of a suitable integral 

by a random-sample average 
n 

1 
f(x,,x,, ' ' . , XJ =-E f(kX1, kxz,. . . ,kX,) (11) 

where (xl, xz, . . . , xN) is  a (generally multidimensional, 
N > 1) random variable with known distribution 
function P(x,, x', . . . , xs); for random-process studies 
involving, say a flat-spectrum noise input of band- 
width B for T seconds, N can be of the order of 2BT. 
For simplicity, we shall base the following discussion 
on Monte-Carlo estimation of the one-dimensional 
integral 

h-=1 

co 
I= 1 f(A)dP(A) (1 2) 

--a3 

by 

although we would, most probably, employ Monte- 
Carlo computation in the one-dimensional case only 
if we required direct simulation for a partial system 
test, or to gain intuitive insight. Note that each cal- 
culation of f?x) may involve solution of differential 
equations. 

The variance of our estimate (13) of (12) on the 
basis of a random sample, (lx,?x,. . . ,"x) i s  

1 

(1 4) 

so that the rms fluctuation decreases only as l/di 
with increasing n. The estimate variance is due to the 
random fluctuation in the distribution of different 
samples (lx, 2x,. . . , "x). We wil l now attempt to "doc- 
tor" the sample (lx,*x,. . . ,"x) so as to reduce these 
fluctuations, while still preserving the relation 

q f ( x ) }=q f ( x ) }= r  (1 5) 

;.e., without biasing our estimate. 

C 2  
I /  
I \  
R ,  

* ( ( f )  FROM SLICER CIRCUIT 
READ 
CONFIDENCE-INTERVAI 
WIDTH 

Figure 4h - Analog computation of confidence-interval width for 
probabilities estimated from a dual-slicer output f ( 0 .  The confi- 
dence-interval-meter reading is proportional to a function of 
<m > E W L  - - 
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(a) Stratified samplingz7 
We divide the range of the random variable x into 

a number of suitably chosen class intervals ti-, < x 
5 t j  and agree to fix the number n j  of otherwise in- 
dependent sample values k ~ = t ~ j  (i=1,2,. . . / nj) 
falling into the jth class interval. Assuming a priori 
knowledge of the probabilities 

Pj=Prob < x 5 #jI=P(4j) - P(#j-l) (16) 
associated with our class intervals (e.g., on the basis 
of symmetry, uniform distribution, etc.), we can em- 
ploy the stratified-sample average 

ni 

as an unbiased estimate of I, with 
Var { f i ; jSTRAT}=c - -LVar  P.2 {f(ix,l} (18) 

i "i 

Note that repeated stratified samples will differ 
only within class intervals. The variance (18) can be 
smaller than the random-sample variance Var{ fF)}/n 
with n=Znj i f  a priori information permits a fav- 

orable choice of the # j  and nj. In principle, it would 
be best to choose class intervals for equal variances 

j 

[ J - 1  t,-, 

and then to assign the theoretically correct number 
of samples to each class interval, ;.e., 

nj=nP j (19b) 
In this ideal case, we should have the relatively 

small estimate variance 

As the class intervals are decreased, the stratified- 
sampling techniques wil l produce results analogous 
to that of an integration formula, but ordinarily the 
class intervals are larger; practical applications are 
usually multidimensional, so that simple symmetry 
relations may yield favorable class intervals. 

(b) Use of correlated  sample^*^,*^ 
If individual sample values k~ are not statistically 

independent (as they would be in a true random 
sample), the expression (14) for our estimate variance 
is replaced by 

Judiciously introduced negative correlation between 
selected sample-value pairs 'x, k~ wil l produce nega- 
tive covariance terms in equation (21) and may re- 
duce the variance well below the random-sample 
variance Var {f(x)}/n without biasing the estimate. 

As a simple example,27 let x be uniformly distrib- 
uted between x=O and x= l ,  and let f(x) be the 
monotonic function (e" - l) / (e  - 1). We design our 
sample so that n is  even, and 2x= 1 - lx, 4~=i - 3x, 
. . . , "x= l  - +'x, with sample values otherwise in- 
dependent. Since f(x) and f(1 - x) are negatively cor- 
related, we find 

so that the rms fluctuation i s  reduced by a factor 
of about 5.6. In addition, the correlated sample re- 
quires us to generate fewer random numbers. More 
interesting applications are, again, to multidimen- 
sional problems.27 Note that stratified sampling, in 
effect, also introduces negative correlation between 
sample values: k + ' ~  can no longer fall into a given 
class interval if k~ has filled the latter. 

(c) Use of pseudo-random samples 
Instead of constructing and possibly recording stra- 

tified and/or correlated samples for Monte-Carlo 
computations, we may utilize special properties of 
pseudo-random-noise sequences. In particular, the 
shift-register states of a maximal-length shift-reg- 
ister generator** with r stages correspond to the r- 
digit binary numbers between (and not including) 
0 and 2'- 1, and one shift-register-sequence period 
produces each of these numbers exactly once. At 
least for low-dimensional random inputs, shift-reg- 
ister pseudo-random-noise generators can thus sup- 
ply uniformly distributed stratified (and correlated) 
samples if we sample over an integral number of 
shift-register periods; more general distributions can 
be obtained with the aid of function  generator^.^' 

(d) Use of a priori information: Importance sampling 
As a matter of principle, Monte-Carlo computa- 

tions often can and should be simplified through 
judicious application of partial a priori knowledge of 
 result^.'^ As a case in point, importance-sampling 
techniques attempt to estimate an integral (12) by 
a sample average f(y)/g(y), where y i s  a random var- 
iable with probability density 

(22) 

The estimate is  easily seen to be unbiased. The func- 
tion g(y) i s  chosen so that 

00 

i s  small, subject to the constraint J p,(y) dy=1. In 

particular, g(y) = f(y)/I would reduce the variance 
(23) to zero, but this would require knowledge of the 
unknown quantity I. Importance sampling permits 
us to "concentrate" sampling near values of y of 
special interest, e.g., where f(y) varies rapidly. 

--o 
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SOME INTERESTING APPLICATIONS 
6. Hybrid-computer Monte-Carlo solution of partial 

differential equations 
Some of the earliest investigators of the Monte- 

Carlo have suggested its application to 
generalized Dirichlet problems requiring the solution 
of a quasi-linear partial differential equation 

(a,, a, 2 0)  (24) 

for the unknown function u(x,y) inside a simple 
closed contour C of the xy plane, where u(x,y) is  
given, bounded, single-valued, and piecewise con- 
tinuous on the boundary C. A special case i s  the 
Dirichlet boundary-value problem for the familiar 
Laplace equation 

In this case, a,=a,=I, K,=K2=O. 
A derivation rather too elaborate for inclusion 

here"~2'~2R shows that the random walk generated by 
the solutions x(t), y(t) of the stochastic equations of  
motion 

- _  dx - -K,(x, y) + X ( t )  
dt 

(26) 

with starting values x(0) = x(,, y ( 0 )  = yo and inde- 
pendent whitr-Gaussian-noise forcing functions 
X ( t ) ,  Y ( t )  with zero mean and power spectral densi- 
ties respectively proportional to a,, a? wi l l  cross the 
boundary C ar random points (xc, y r )  such that 

Hence, the sample average u(xp, y c )  over a suitable 
number n of random walks is an unbiased estimate 
for the desired solution u(x,, yo) at (x0, yo). Simple con- 
vergence conditions were derived by Petrowsky.28 

Chuang, Kazda, and Windeknecht'a were the first 
to employ this theorem for analog/hybrid-computer 
solution of partial differential equations. They solved 
the ordinary differential equations (26) on a conven- 
tional "slow" analog computer with tape-recorded 
random-noise inputs and applied x(t), y(t) to the hor- 
izontal and vertical plates of an oscilloscope. TO 
demonstrate the feasibility of the Monte-Carlo 
method, they restricted themselves to boundary 
functions u(x,.,yf,) constant and equal to 100 on a 
continuous portion C,  of the boundary C and equal 
to 0 on the remaining boundary. Boundary crossings 
of the oscilloscope beam marking the point (x,Y) 
were detected by an arrangement of masks and pho- 
tocells associated with C and C,, and E(u(x,,y,)} 
could be estimated simply by 100 times the fraction 
of boundary crossings taking place across C,, as de- 
termined by a decimal counter. Computer and noise 
source limited computing speed to about one ran- 
dom walk per second; solution errors for samples 
of 300 to 2,200 runs were of the order of a few per- 
cent and were ascribed mainly to statistical fluctua- 
tions. 

In modern analog/hybrid computers, accurate and 
convenient combinations of function generators, an- 
alog comparators, and digital logic replace the cum- 
bersome photocell circuits used to detect boundary 
crossings, and complicated boundary functions can 
be generated and averaged digitally (figure 5). More 
significantly, ASTRAC Il-type iterative differential 
analyzers can perform the 500 to 2,000 complete 

+lo0 OR 

-100 COMPUTING ELEMENTS i ( x .  y )  U 

U MULTIVIBRATOR GENERATING /ix,y) 

COMPARATOR 

I x , ,  ' 
100 

Figure 5 - Hybrid-computer solutlon of the Dirichlet problem, 
for Laplace's differential equation ~ z u U / ~ x '  + pzu/py2 = 0 Inte- 
grators 1 and 2 solve the stochastlc equations of motion d x / d t  
= X ( t j ,  rly/t l t  = Y ( f )  with independent Gaussian white noise in- 
puts X ( t ) ,  Y ( t ) .  The comparator-actuated flip-flop 5amptes x ( f ) ,  
y(l) and resets the integrators when the point ( x , y )  crosses the 
boundary C defined by i ( x , y j  2 0. The hound'try funtl lon u(xf.,y,.) 
of the track-hold outputs x,., y,, 15 computed by  a n d l o g  o r  digltal 
circuits and is averaged, preferably digitally, to produco the solu- 
tion estimates U ( X ~ ~ , ~ , ~ ) .  The boundary could also I I C  defined in 
the form 

U = 1 i f  [y - f , (x ]  2 01 OR l y -  h ( x j  I 01 
IO0 I 

!)#,, ) , I  which would he implemented with two comparators and pdt( h d  
, TCl I),, 'l\,,,,,~,YIJ logic. 
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random walks required for each solution point within 
one to three seconds; it is  this fact which may make 
the hybrid-computer Monte-Carlo method competi- 
tive with other methods of solving partial differential 
equations. The Monte-Carlo method, still largely un- 
emlored because of insufficient computing speeds 
with earlier equipment, offers a number of intriguing 
possibi I ities : 

1. Unlike other solution methods, the Monte- 
Carlo method permits us to compute the solu- 
tion u(x ,  y) only at specific desired points (x, y )  
of interest. 

2. Computer setups such as those in figure 5 are 
easily generalized to apply to three-dimen- 
sional problems. Relatively little additional 
equipment is  required, while conventional 
methods of solving partial differential equa- 
tions would become radically more compli- 
cated. 

3. After the solution is  computed for a number of 
points, it is  often possible to simplify computa- 
tion of the solution at a point (x,y) by averag- 
ing over solution values u(x, y) computed earlier 
for surrounding points. In particular, the solu- 
tion ~ ( x ,  y) of Laplace's equation equals the 
average of solution values over any circle cen- 
tered at x, y.'" 

4. Solution time can be reduced through sequen- 
tial estimation (section 3) and by the variance- 
reducing techniques of section 5. In particular, 
shift-register noise generators can generate suc- 
cessive negatively correlated random walks for 
variance reduction. The shift-register can, for 
instance, be reset to produce each pseudo- 
random-noise sequence twice12-4* and we can 
invert one sequence of each pair to introduce 
negative correlation between them. 

Finally, the application of Monte-Carlo methods to 
more general classes of partial differential equa- 
ti s?.7. 28 and more general random forcing functions 
presents a fascinating field for future research. 

At least in principle, one sample of random walks 
starting at (xo,yo) defines the solution of the partial 
differential equation (24) at (x", yo )  for a l l  admissible 
boundary functions u(x,, yc). If we divide the boun- 
dary C into small arcs centered at the boundary 
points (xl, y,) ,  (x2,yn), . . . , (x,,y,) and record the frac- 
tions h, of the total number of boundary crossings 
falling into the k"' arc, then 

m 

E {  m,, yo)} =: 2 h,u(x,, yJ (28) 
I;=1 

7. Random-search methods for parameter 
optimization 
The most commonly used computer methods for 

determining the parameter values el, a2, . . . which 
will optimize (minimize) a differentiable criterion 
function f(a,, az,  . . .) involve computation or meas- 
urement of the gradient components 

corresponding to each parameter at a trial point 
(a l ,  c y 2 , .  . .). Each trial parameter value is  then incre- 
mented by an amount proportional to the corre- 
sponding gradient component, so that the parameter 
point progresses in the direction of steepest descent 
(figure 6a); we usually decrease the step size as the 
minimum i s  approached. Gradient methods may fai l  
to converge, or converge too slowly, if the criterion- 
function "hill" has ridges, winding canyons, etc., or 
i f  the function f(a,, a q , .  . .) is  only piecewise differ- 
entiable or continuous. In such situations, one may 
turn to random-search methods which can, in addi- 
tion, simplify the computation routines. A pure ran- 
dom search would simply compute the criterion 
function at a number of randomly chosen points 
(a , ,  at,. . .) in parameter space and select the param- 
eter point yielding the smallest value of f(a,, a?, . . .). 
This optimization technique, which does not utilize 
any known continuity properties of the criterion 
function, is  sometimes employed to find starting 
values for other optimization methods, but it i s  essen- 
tially impractical by itself. Assume that we have N 
parameters al, a?, . . . , as, each capable of varying 
between zero and 100 percent, and that we wish to 
locate a single minimum with only 10 percent ac- 
curacy. I n  this case, the probability of finding the 
desired minimum in a single trial is  IO-', and the 
probability o f  finding the minimum at least once in 
m independent trials is 

p=1 - (1 - IO-Jjrn IO-S'rn (29) 

We are truly looking for a needle in an N-dimen- 
sional haystack; with the number N of parameters 
only as large as five or six, any realistic optimization 
method must utilize known properties of the cri- 
terion function F(al, a?, . . . ,a,), such as continuity 
and differentiability. Optimization by sequential ran- 
dom perturbations (creeping random search) permits 
multiparameter optimization with a minimum of 
control l ~ g i c . ~ " - ~ ~  Referring for simplicity to the two- 
parameter example of figure 6b, we start with a trial 
point (oal,"a2) and vary al, a2 simultaneously by in- 
dependent random positive or negative increments 
A a , ,  A,, obtained from a noise generator. If f(a,,a,) 
i s  not improved, we try new random increments A a , ,  

-9- 
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Figure 6 -  Two-dimensional parameter optimization ("hill climbing") by a gradient method (a), 
and by sequential random perturbations (t). 

Am2 until an improvement is  obtained; then we use 
('a, + A a , ,  'a2 +A@,)  as tbe next trial point ( ' L Y , , ~ C Y ~ ) .  

With random perturbations distributed about zero 
with a small standard deviation (small step sizes), the 
iteration will surely converge whenever the gradient 
method does. Although convergence i s  slower, our 
random-perturbation scheme involves no exploration 
steps, varies a l l  parameters simultaneously, and is not 
affected by ugly parameter-space terrain features, 
such as ridges and canyons. 

Since unused perturbations A a , ,  Am2 must be stored 
and subtracted out, it appears best to restrict per- 
turbation values to h, -h or to h, -h, and 0, where 
h is  a suitably chosen step size; increment values can 
then be stored digitally, say, in flip-flops. A shift-reg- 
ister noise generator is, once again, an especially con- 
venient source of binary random Perturbations. 

Random perturbation optimization is  especially 
suitable for very fast iterative differential analyzers 
like ASTRAC II (section 2), where it i s  conveniently 
implemented with hybrid analog-digital coefficient- 
setting circuits (simple D/A  converter^).'^ The follow- 
ing relatively simple improvements have been shown 
to speed convergence at the expense of relatively 
little added digital logic: 

1. A hybrid analog-digital parameter-setting circuit 
makes it easy to change the step size h as a 
function of past failures or successes, or as a 
function of F.3' 

2. We can make, say, every 10th or 20th step a 
large one to detect secondary maxima or min- 
ima, or saddle points.34.3' 

3. We can correlate successive random perturba- 
tions, ;.e., we can make perturbations in the 
direction of the last success more likely than 
perturbations in the directions of past failures.37 

RastrigirP has shown that even with randomly-di- 
rected perturbations in an N-dimensional parameter 
space, the expected rate of progress in the gradient 
direction exceeds that of a simple gradient method 
employing N gradient-determining steps followed by 
a working step, provided that N 2 4. Rastrigin's re- 
sult i s  not conclusive, because both gradient and 
random-perturbation methods are usually modified 
by various step-size changing strategies and other 

His result is, however, suggestive if one 
considers the relative simplicity of the sequential- 
perturbation method. 

Note on Pre-Averaging 
W. Giloi* has suggested that, in view of 

€((z -?)*) - _- m 1 E (  ( f  -7p) 
Var {z}  =-Var { f }  = 

n A  n n n - I  
I _ -  

m 

confidence-interval estimation on the basis of equa- 
tion (I) does not require actual implementation of 
the pre-averaging operation; one merely employs 
n / m  -1 degrees of freedom instead of n - I  de- 
grees of freedom for the t distribution. This seems 
indeed justified, provided that n / m  is large enough. 
The above relation, together with equations (27.7.1) 
and (27.7.2) of Cramer's Mathematical Methods of 
Statistics (Princeton University Press, 1951) shows 
that the expected values of [(z - ? / ( n / m  - 
and [ f  - f i 2 / ( n  - differ by an error of the order 
of (m/n)"/', while their variances differ by a term of 
the order of (m/n)?. The exact error can be obtained 
through a rather formidable calculation but depends 
on the (usually unknown) fourth-order central mo- 
ment of f .  

*Private corn mu n icat ion 
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ABSTRACT 
This paper describes the use of a fast iterative analog computer to study a sophis- 

ticated communications system. This system uses amplitude modulated orthogonal 
polynomial waveforms as carrier signals. 

The Arizona Statistical Repetitive Analog Computer (ASTRAC-I) setup includes 
the polynomial waveform generator and a matched filter receiver. Accuracy and crosstdk 
are measured using a ramp[e-hold-memory-pair module. The system is also tested with 
additive Gaussian noise with the aid of the ASTRAC-I hybrid analog-digital statistics 
computer (sample averaging unit and distribution analyzer). 
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INTRODUCTION 
A proposed method of multiplex transmission employs 

repetitively generated Legendre polynomials a s  carrier 
waveforms for a set of signals [I]. 

For this study the polynomials are generated by 
digitally controlled analog computing elements in an 
iterative differential analyzer, the Arizona Statistical 
Repetitive Analog Computer (ASTRAC-I) [2]. Figure 1 
indicates how system-performance measures (signal-to- 

-Qh F-1- 

ANALOG COMpUrtR 
SIMVLAlfI) 

XMTK L K V R  GtNERAlOR 

" I ~ ~ D J -  d &kctmm 
.**,,,I 

ANALOG 
C O ~ A I A l O R  &3--El COUNRR 

-Ica +zLL- 
lhrnhold 

Fig. 1. - Repeated analog-computer simulation of transmitter 
and receiver operation with random-noise input permits 
measurement of mean-square signal and noise and of detection 

probabilities. 

noise ratios and detection probabilities) are measured 
by statistical sampling using a sample averaging unit 
[ 3 ]  and an amplitude distribution analyzer [4]. 

~~ 

* Manuscript received June 3, 1964. 
** Department of Electrical Engineering, University of Ari- 

zona, Tucson, Arizona. 

Since the theory for this communications system is 
well developed, the simulation serves as a check on 
the accuracy of ASTRAC-I and demonstrates the power 
of a digitally controlled iterative analog computer for 
studying a sophisticated communications system. 

THE COMMUNICATION SYSTEM 

The system to be simulated uses Legendre polyno- 
mials as carrier signals. The first five polynomials 
illustrated in figure 2a are 

Fig. 2 a. - Legendre Polynomials. 

-13- 



B . K .  Conant : Astruc-I Study of an orthogonal-function communications sy.rtein 

These polynomials satisfy the orthogonality condition 

To generate analogous polynomials orthogonal over 
the interval 0 < t < T on an iterative analog com- 
puter, a shift to the right and a change of variable 
is necessary 

x = (2/T) (t - T/2) (3) 

The five polynomials then become 

PJt) = 1 

P , ( t )  = 6 ( t2/TZ) - 6 (t/T) + 1 
Pl(t) = 2 (t/T) - 1 

(4) 
P8(t) =I 20 (t3JT3) - 30 (t'/T') + 1 2  (t/T) - 1 

P, (t) =, 70 (t4/T4) - 140 (t3/T3) + 90 (t2/T?) 

- 20 (t/T) + 1 

Figure 2 illustrates how these waveforms may be 
used in a multiplex system. The Pk(t) are generated 
by means of a polynomial waveform generator. The 
coefficients ak represent the modulating information 
for each channel. 

I N  Pol ynomiol 

T i m i n g  

Hold  

Fig. 2 b. - Transmitter. 

The modulation process consists of four-quadrant 
multiplication. The ak must remain constant through- 
out the interval T to preserve orthogonality of the wave- 
forms. Therefore the modulating waveform must be 
sampled at a rate such that ak remains essentially con- 
stant in the interval T, or the modulating voltage may 
be sampled and held constant in the interval by a 
sample-hold circuit. 

The output of the waveform generator has the form 

GENERATOR SIMULATION 

This system especially lends itself well to study on 
a repetitive analog computer since, in fact, the actual 
system would be implemented using similar analog 
computer techniques. 

The computer setup for generating the Legendre 
polynomials is illustrated in figure 3. This setup makes 
the four-quadrant multipliers unnecessary. 

(0. 

'"---*.-L!,/ 
Fig. 3.  - Computer Setup-Waveform Generator. 

ASTRAC-I is operated at 10 runs per second. The 
period T of the waveforms was made equal to 80 milli- 
seconds, shorter than the COMPUTE period (90 milli- 
seconds) so that an accurate sampling time at T could 
be set into the computer using the digitally adjusted 
sampling time control. Gain <(A )> is adjusted so that 
the output voltage E(t) is a convenient amplitude. 

THE RECEIVER 

A basic receiver is illustrated in figure 4. The output 
modulation coefficients ak for each channel are de- 
termined by correlating the composite signal A E (t) 
with the corresponding carrier waveform for that chan- 
nel, i.e. 

l T  
T 

uk = - E(t) Pk(t) dt  

Receiver 

Amphfier. 

I I 

I I  
! I W a v e f o r m  I I I 

Fig. 4. - Receiver. 

This equation rollows immediately from the orthogon- 
ality condition (2) together with the definition of the 
composite signal ( 5 ) .  

At the start of the RESET period, at time T,  the 
correlator output voltages are sampled, and the integ- 
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raters are reset in preparation for the next transmission 
interval. The sequence of sampled voltages taken from 
the sample-hold circuit for each channel represents the 
original modulation in sampled form. 

The polynomial waveforms may also be separated 
at the receiver by matched filters, which does away 
with the need for explicit multiplication. A derivation 
of the equations for the matched filters for the first 
five polynomial waveforms is given in Appendix I. 

RECEIVER SIMULATION 

The computer setup for the matched filters is 
illustrated in figure 5 .  The integrators are reset at a 
10 cps. rate in synchronism with the waveform gener- 
ator-transmitter. Gain <( B )> is adjusted to give a 
convenient output voltage amplitude. S o ,  S, , S, and 
S, are the outputs of the filters for the inputs Po, P, , 
Pz and P, respectively. 

IS' 

Fig. 5. - Computer Setup-Matched Filter. 

ACCURACY 

The output of the polynomial waveform generator 
was observed on an oscilloscope and appeaml as shown 
in figures 6, 7, 8, 9, and 10. a4P4 was generated 
merely to demonstrate the inaccuracy of higher order 
waveforms. The output summing amplifier takes the 
difference of large voltages and because of this, error 

0 2 0 v k m  

0 

Fig. 6. - Po. 

0 

Fig. i .  - PI. 

2 O v k r n  
0 

Fig. 8. - P, . 

and noise are magnified. The output magnitude or 
higher-order polynomials becomes very small because 
of the scaling that is necessary. To improve this scaling 
situation each polynomial would have to be generated 
separately at much greater equipment expense. 

0 IO v/c m 

Fig. 9. - PI. 

0 I v/cm 

Fig. 10. - P,. 

Figure 11 is an example of the ouput sum of P o ,  
P, , P,, P, and P, . 

0 4 v/cm 

Fig. 11. 
4 

L-1 
z UL Pr ( t )  

Accuracy measurements were made on the four poly- 
nomial waveforms. This was done by sampling the 
starting voltage of each waveform ak Pk(0) and the 
voltage at time T, a, P,(T) and comparing them with 
the input a. Each waveform was sampled using the 
ASTRAC-I sample-hold-memory-pair module and the 
sampled value read on a digital voltmeter. The sampl- 
ing times t = 0 and f = T are set by pushbuttons on 
the digital control unit of the computer. The results 
are sohwn in table I. 

TABLE I 
Generator Accuracy 

Gain <(A D = 10.0 
llk Pk(o) pk(T) 

a, 4.0 40.0 40.0 
41 4.0 40.5 39.9 
1 2  4.0 40.2 38.0 
a, 2 .o 16.9 18.0 

The output of the matched filters is illustrated in 
figures 13 and 14. The input polynomial 5 u m  is shown 
in figure 12 with u3 equal to zero and the correspond- 
ing filter output in figure 13. It can be seen that s,(") 
is approximately equal to zero in agreement with the 
theory of matched filters. Figure 14 shows the output 
S,(t) with as unequal to zero. 
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0 

0 t 80 

4 v/c rn 

Fig. 13. - S3 ( t ) ,  u2 = 0. 

0 10 v/cm 

0 I 80 

Fig. 14. - Ss ( I ) ,  u3 # 0. 

Measurements were made at the output of each 
matched filter and compared to its theoretical output 
calculated using the input a, shown in table I. The 
results are shown in table 11. 

TABLE I1 

Filter Accuracy 
S,(T) meas. &(T) theo. Gain << B )> 

S O  (T) 63.17 64.0 1.60 
21.2 21.4 1.60 

8.00 s, (T) 61.7 64.0 
s, (T) 43.0 45.7 16.00 

The effects of computer inaccuray show up in the 
higher-order polynomials, which require computer set- 
ups with more integrators connected in series. Any 
error will be successively integrated. Error in the 
integrators and summing amplifiers is due mainly to 
the tolerances of the summing resistors and feedback 
resistors and capacitors which in this case were all 
one percent. Noise, particularly chopper noise, also 
contributes to the error. For the entire simulated 
system, from input to output, the greatest error 

Sl (T) 

S,,(T) theo. - meas. 
S,,(T) theo. 
__ ~~ x 10070 

is about 6 percent for the third order polynomial. 
These measurements were taken one channel at a time 
so that crosstalk did not enter into the measurements. 

CROSSTALK 

Crosstalk is due to inaccurate polynomial waveforms 
and to inaccuracies in the matched filter. 

A slowly varying modulating signal was sampled by 
a sample-hold unit and fed intno one channel, the 

other channels having no input. The output of the 
other channels was observed. The ratio of the magni- 
tude of the undesirable output signal to the input signal 
was used as a measure of crosstalk. The results are 
shown in table 111. 

TABLE 111 

Crosstalk 
s o  SI S? s, 

SI, 
a. ~ x 100% 0.8% 0.8% 0.88% 

a, 0.5 yo 0.5% 0.3% 
a, 0.170 0.3% 0.7% 
a3 1.1 yo 0.4% 0.27% 

4 

The crosstalk data are normalized so that Gain Q A )> 
and Gain In each case the 
crosstalk is less than 1.1 percent. 

B D both equal unity. 

STATISTICAL MEASUREMENTS 

Noise response. 

The noise source used for making statistical measure- 
ments was the ASTRAC-I Noise Generator, which 
filters a random telepraph wave generated by a radio- 
active source to give Gaussian noise [ 5 ] .  

The mean square output at time T of the matched 
filters h,(X) and 6, (A) was measured (estimated) with 
the ASTRAC-I hybrid analog-digital statistics com- 
puter [3]. The results compared with the theoretical 
results (see Appendix !I) are shown in table IV. 

TABLE IV 

Noise Output of Matched Filters h, and h,  

Input Noise RC = 1000 Gain <( B D = 9.60 
= 3 1 3 ~ ~  

Filter Mean Sguare Output a$ Time T 
theoretical measured 

h,, 704 u2 712 vz 
h ,  239 u2 231 u2 

The experimental results are seen to agree well with 
the calculated results. 

Detection. 

Detection probability measurements were made at 
the output of h,(~) and h,(X). Detection probability 
was estimated directly with the aid of the ASTRAC-I 
Amplitude Distribution Analyzer [4]. At the same 
time, the noise power output of the filter was measured 
with the statistics computer. Knowing the output noise 
power and using a &le of the normal distribution, 
one can calculate the theoretical detection probability 
for a given critical region (see Appendix 111). This 
WdS compared to the measured detection probability 
and the results shown in table V agree very well. 

-16- 
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TABLE V 
Detectim Probability 
Gain < ~ B D  = 8.0 

Input Output De:, Prob. &(") yc 
Noise Noise meas. calc. 

ho 300 v2 477 v2 0.889 0.888 31.7 v 5 v 
h, 316v2 153 v2 0.797 0.808 21 v l O v  

I 

CONCLUSION 

The digitally controlled repetitive analog computer 
has proven particularly useful in studying this com- 
munications system. Such a machine makes it easy to 
study the effects of noise on signal-tenoise ratios and 
detection probability by actual statistical measurements 
on a large sample of computer runs. 

APPENDIX I 

For a given signal P(t )  a matched filter is a net- 
work whose impulse response is [6] 

h(h) = P ( T  - t )  (6) 

For the Legendre polynomial waveforms, the impulse 
responses of the matched filters are 

h,(A) = 1 

h,(X) = -2 (Xz /T2)  + (I/") 

hz(h) = 6 (X3/T3) - 6 (A2/T2) + (I/T) (7) 

h3(X) -20(X4/T4) + 30(A3/T3) 
- 12 ( A * P )  + ( I F )  

h d ( X )  = 70 ( A s p )  - 140 (A4/T') + 90 (X3/T3) 
- 20 (X2/T2) + (1/T) 

Note that each impulse response has been multiplied 
by 1/T, so that the expression for the filter output at 
time T will be independent of T. 

Taking the Laplace transform of the impulse response, 
one finds the transfer function of the filters 

Ho(s) = ~ / T J  

H,(s) = (-2/T2js?) + ( I p s )  

H,(s) = ( 1 2 / " 3 ~ ~ )  - (6/T2s2) + (~/TJ) (8) 

H3(s) = (- 120/T4 P )  + (60/Ta 13) 
- (12/T2sZ) + (1/Ts) 

H,(s) = (1680/T5 5') - (S40/T4 s') 
+ (180/T3s3) - (20/Tzs2) + (1/TJ) 

Each filter output is given by 

s k ( t )  x-' [ak P k ( J )  Hk(J)] 

so that for t = T 

APPENDIX I1 

If noise is added into the system at the input of 
the matched filters to simulate interference, the noise 
output of the filters may be expressed in the following 
manner [71. We define the <( autocorrelation function 
of the filter D as 

T-X 

R%&T(T,T) =I h k ( A , T ) h k ( h + T , r I ? d h  (11) 

For example, for h o ( A , T )  and h, (h ,T)  we have 

The noise power at the filter output for t = T with 

(14) 

where R,,,, (.) is the autocorrelation function of the 
input noise. 

For white Gaussian noise passed through a simple 
low-pass RC filter as is done in the noise generator, 
the autocorrelation function of the generator output is 

no signal present is 
.T 

Rss(T) = J R w T  (7, T) R,(d d~ 
0 

R,],,(T) = R,,,,(O) ~ 1 ~ 1 / ~ ~  (15) 

where Rnn(0) is the mean square value of the noise, 
or noise power. 

Therefore the noise power output of the two example 
filters is 

-2R,,,,(O) d R C  [1 + - 2 RC 12 (17) T 

APPENDIX III 

Detection. 

Detection theory indicates that a test statistic useful 
for detection of a known signal in white Gaussian 
noise is generated by passing the signal corrupted by 
the noise through a matched filter [lo]. 

Figure 15 illustrates the simple detection problem 
for the detection of a d-c signal which has been cor- 
rupted be additive independent Gausian noise. &(T) 
is the expected value of the output of the matched filter 
when a signal is present. h, is the hypothesis that a 
signal is present; and h, is the hypothesis that there 
is no signal. 4 [NkQ Ih,] is the probability density 
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function of the noise and the signal and ,#, [N,(T) I h,j 
is the probability density function of the noise with 
no signal. The input noise has zero mean. The noise 
rreates a region of uncertainty as illustrated. 

Fig. 15. - Detection of a Known Signal in Gaussian Noise. 

For the purposes of this study a critical level yc is 
determined by a Neyman-Pearson test, that is, the 
critical level is chosen so that the detection probability 
indicated by the area 1 - B, is maximized for a given 
false alarm probability, indicated by area A. For the 
purpose of the simulation, the value of ye was chosen 
arbitrarily. 
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ABSTRACT 
This report describes the design and performance of 
a fast wideband quarter-square diode multiplier de- 
signed to work with the ?IO-v low-impedance corn- 
puting circuits of a high-speed iterative differential 
analyzer (ASTRAC / I ) ,  or in  other hybrid analog- 
digital computer systems. To reduce cost, the new 
multiplier employs absolute-value squaring circuits 
and does not require committed computer ampli- 
fiers. Improved combination shunt-series switching 
circuits and low resistance values ensure wide band- 
width (i.O.So/o of half-scale dynamic error at  I O  KC, 
< I  degree phase shift below 70 Kc). Temperature- 
compensating diodes in the bias networks reduce 
thermal drift below 0.7 mv/”C, so that the multiplier 
static accuracy of -+0.200/0 of half-scale is maintained 
from 15 to 40” C. A number of useful design hints are 
listed. 

I NTROD UCTlO N 
This report describes the design of a new analog 
multiplier developed for a high-speed iterative dif- 
ferential analyzer, ASTRAC I I  (Arizona Statistical Re- 
petitive Analog Computer 11). ASTRAC II i s  a fast 
iterative analog computer with sophisticated digita! 
controls and special components for statistical and 
optimization problems.’ The large bandwidth of its 
analog computing components permits up to 1000 
repetitions per second as well as real-time simulation. 
A large sample of solutions can be obtained quickly 
enough so that simulated system statistics taken over 
1000 to 10,000 computer runs can be optimized man- 
ually or automatically in a very short time. 

Because of the low computing impedances used 
with ASTRAC II (1K and 5K summing resistors), its 
speed is basically determined by the bandwidth of 
the operational amplifiers, rather than by the effects 
of external capacitances. ASTRAC 11’s operational 
amplifiers (similar to Burr-Brown type 1607A) have 
their unity-gain (0 db) frequency at a minimum of 
20 Mc. Their small physical size permits them to be 
plugged directly into the rear of the computer patch- 
bay without any signal wiring whatsoever, and their 
high current capability (30 ma at 210 v up to 1 Mc) 
enables them to drive the remaining stray capaci- 
tance to relatively high frequencies. Other analog 
computing components - such as quarter-square 
multipliers - also plug directly into the rear of the 
patchbay. This location is  practical because frequent 
adjustments are not necessary. 

The standard plug-in module used for a l l  of 
ASTRAC 11’s analog computing elements is  shown in 
figure 1. Figure 2 shows one of the multiplier’s two 
absolute-value squaring circuits; figure 3 illustrates 
the principle of quarter-square multiplication with 
two absolute-value squaring circuits. This figure also 
shows special squaring inputs for squaring with re- 
duced current requirement. Figure 4 shows the 
equivalent loading circuit used to calculate the re- 
quired input current. 

”.* 

Figure 1 - ASTRAC II multiplier plug-in module 
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Figure 3 -Two absolute-value squaring circuits implement quar- 
ter-square multiplication Spectal "2" inputs permit squaring with 
reduced input current 

, 
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- f '  - 
Figure 2 -The circuit shown generates a current proportional to 
( X  + YI2.  The circuit for - (X  - Y)x is identical but with reversed 
diodes and birli. Temperature-stabilizing diodes in the bias line 
reduced thermal-drift error from 2 7  mv/"C to 3r0.7 mv/"C for 
squaring. A 15-pf capacitor and series resistor and capacitor to 
ground for phase-shift compensation extended the 0So/o of half- 
scale error frequency by about one octave. 
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Figure 4 - An equivalent loading circuit enables one to calculate 
the current requirements of  the multiplier in any application 
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ANALYSIS OF CIRCUIT PERFORMANCE 

Basic principles 
Quarter-square multipliers implement the relation 

I 
XYIV =- [ ( X  + Y)2 - ( X  - Y),] .  

4 v  
Maximum errors from each of the two squaring cir- 
cuits required can add. Consequently, k O . l O o / o  of 
half-scale multipliers require kO.OSO/o of half-scale 
squaring devices. 

Absolute-value squaring 
Diode squaring circuits can use separate diode 

networks to form the positive and negative halves of 
the parabolic transfer characteristics YZ = ax2, or a 
single network preceded by an absolute-value circuit 
may be employed as in figure 3. The latter alternative 
was chosen because i t  is more compact, less expen- 
sive, and easier to adjust. Absolute-value squarers 
are, on the other hand, more difficult to design be- 
cause of the complications inherent in cascaded 
diode limiters. 

Error sources in the absolute-value circuit are the 
forward bias required to turn the diodes on, their 
nonlinearity after they are on, their finite recovery 
or turnoff time, their capacitance, and mismatch in 
their characteristics. These problems were overcome 
by slightly forward biasing the two diodes for zero 
input, by designing the square-law network for an 
accurate overall transfer characteristic which takes 
into consideration nonlinearities in the absolute- 
value circuit as well as nonlinear loading of the sum- 
ming resistors (as diodes switch off and on), by using 
fast-recovery low-capacitance diodes, and by match- 
ing the two absolute-value circuit diodes for equal 
forward-voltage drops (k0.5 mv at 2 ma of forward 
current) to make the output of the absolute-value 
circuit for positive and negative ( X  t Y )  very nearly 
the same. 

The summing resistors were also matched to 
+0.01%. The primary source of static error, then, i s  
the piecewise-linear approximation to a squaring 
curve. 

The diode squaring circuits 
Figure 5 illustrates the operation of the basic 

diode-limiter circuit. The transfer characteristic 
shows zero output current for input voltages smaller 
than the "breakpoint" voltage of Vbp. For input volt- 
ages greater than Vap, the channel switches "on" and 
produces positive output current; this i s  a "positive" 
channel. The rate of increase (slope or transfer ad- 
mittance) can be specified independently of the 
breakpoint. When several positive channels are 
driven by the same input and their output currents 

* D 3  

Figure 5 - A "positive" diode limiter channel and its transfer 
characteristic. A combination of shunt and series limiting can 
greatly reduce effects of diode capacitance. D, ("catching" 
diode) and D, perform shunt limiting, and D, performs series 
limiting. The improvement obtained with all three diodes did 
not justify the added expense, but a single diode was markedly 
inferior to a pair of diodes. R, could be chosen for the proper 
slope, and then R, chosen for the proper breakpoint, so that R, 
is not required; but R, permits the designer to adjust the slope 
without affecting the breakpoint. 

are summed at the summing junction of an opera- 
tional amplifier, their composite transfer character- 
istic can be made to approximate the first quadrant 
of a square-law characteristic. 

Figure 6 illustrates the error due to polygonal ap- 
proximation of a square-law characteristic. I t  can be 
shown that the maximum absolute errorwill besmall- 
est if the breakpoints are equally spaced, the slope 
increases by an equal amount at each breakpoint ex- 
cept the origin, and the slope of the first segment at 

I 

Figure 6 -The error in an exactly piecewise-linear approximation 
to a square-law characteristic 
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the origin equals one-half the increment in slope at 
subsequent breakpoints. The maximum absolute 
error is, then 

(2) 
where n i s  the number of approximating segments 
per quadrant. The multiplication error will be twice 
this or 

Emult= (25/n*) O/O of half-scale (3 1 
In low-impedance *IO-v circuits the variation in 

diode conductance is  more significant than in high- 
impedance *loo-v circuits. Although this effect 
makes analytical design more difficult, i t also permits 
“diode rounding” to approximately halve the meas- 
ured maximum absolute error given by equation (3). 

Increasing the number of the segments per quad- 
rant in the piecewise-linear approximation to a 
square-law characteristic wil l not increase the accur- 
acy past a certain point determined by the compo- 
nent tolerances. Trimming potentiometers were used 
to vary the bias resistors by about 1O0/o, which per- 
mitted t0.05’/0 of half-scale squaring accuracy (at 
25OC), using 1% and 5’/0 resistors with unmatched 
diodes in the squaring network. Breakpoint adjust- 
ment is  superior to slope adjustment, for breakpoint 
adjustments permit diode variations to be ”adjusted 
out.” Variations in the slopes, on the other hand, are 
caused by resistance variation, and the tolerance of 
the resistors can readily be made as small as neces- 
sary. It was fodnd that with adjustable breakpoints 
the tolerance of the slopes could be rather large. The 
combination of I o / o  and So/o resistors used (stock 
values) gave a net slope tolerance of about 3’/0. On 
several of the fourteen squaring circuits which have 
been built, one or two of the resistors in series with 
trim pots had to be changed to a higher or lower 
value to change the range of adjustment slightly. A 
sma I ler to le ra nce on the “slope - adj us t i ng” resistor 
R, would avoid this difficulty; but the change re- 
quired was obvious and easily made when the circuit 
was adjusted. The slope-adjusting resistor, R,, is 
shown in figures 5 and 7. 

E,= (12.5/n2) O/O of half-scale 

Use of catching diodes 
As shown in figure 7, with R, > R,, as in the multi- 

plier, the catching diode D, with D, i s  superior to D, 
and D, in improving the frequency response. Besides 
improving the frequency response, the catching 
diodes D, also reduce the mutual interaction of  the 
breakpoint adjustments, and this results in a simpler 
adjustment procedure. In addition, the catching 
diodes present a more constant load to the absolute- 
value circuits as limiter diodes switch off and on. 

It is interesting to note that added shunt diodes 
did not seem to improve the operation of the abso- 
lute-value circuits. 

Figure 7-The effectiveness of a catching diode D, with a series 
diode D, as compared to a shunt diode D, with D, in reducing 
the effects of diode capacitance depends on the relative size of 
the resistors R, and R,. The back impedance (or impedance of 
a reverse-biased diode) i s  symbolized by rb, while the forward 
impedance i s  symbolized by r,. The equivalent cirtuits for the 
channel-off state are shown in (a) for D, and D, and in  (b) for 
D, and D,. The transfer impedance of the two “T” networks 
may be written immediately by inspection using the “Y” to “A’ 
transformation and taking the 1-2 side. In (a), Z,, = [R,r, + R l ( r b  

4- 17,) + r,(rb + R3)l/r, 7 Rlrb/r, when rb >> max (R,, R,) and 
r, << min (R,, R,). Similarly, in (b), Z,, - R3rb/r l .  Thus, the 
transfer impedances are approximately equal for R, = R,; but 
for R, > R,, as in the multiplier, the catching diode in (a) gives 
higher transfer impedance. In each channel of the multiplier 
R, - 2R,, and it was found experimentally that approximately 
one octave higher frequency for a given error was possible in  the 
multiplier with catching diodes than with the other shunt diodes. 
This shows that rb acts like a capacitance. 

Improvement of accuracy near zero 
Figure 8 shows that two diodes in series (one in 

the absolute-value circuit and one in the first limiter 
channel) turning on together at the origin were re- 
quired to improve the accuracy by the same amount 
as one diode turning on at other breakpoints. 

Slight forward biasing of the absolute-value circuit 
diodes for zero input was required for high accuracy 
near zero. Optimum forward bias was about 0.100 V. 

In addition, the first two limiter channels were 
slightly forward biased for zero input. This resulted 
in canceling k 3  mv d-c offsets from the two squar- 
ing circuits. 

+ 
BPI BP* BP8 BP, 

Figure 8 -Twice the curvature (caused by “diode rounding” a5 

the diodes turn on) at the origin, where the increment in slope 
1s one-half the increment in slope at later breakpoints, improves 
the accuracy by the same amount as the diode rounding at the 
later breakpoints This IS a bonus provided by the cascading of  
a diode in the absolute-value circuit and one in the first limiter 
channel, which turn on together 
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Choice of diode type 
Selection of diode type was based on observation 

of the rectification of a 300 Kc sine wave, and on a 
survey of diode specifications versus cost. To multi- 
ply accurately at 100 Kc the squaring circuits would 
have to generate accurate 200 Kc sine waves. In- 
expensive low-conductance diodes and expensive 
high-conductance diodes were found to have similar 
characteristics near the origin (forward currents of 
less than 0.2 ma) so that inexpensive low-conduc- 
tance diodes perform nearly as well as high-con- 
ductance ones. Substitution of different diode types, 
including germanium diodes, for the catching diode 
did not change the circuit performance. 

The type of diode chosen was the 1N4009, which 
is an inexpensive high-quality silicon junction diode 
intended for the Skybolt program. DATA Semicon- 
ductor and SCR Tabulation gives its recovery time as 
4 nsec and its capacitance as 4 pf. The limiting factor 
in its performance is its capacitance. Diodes with 
lower capacitance are available, but smaller capaci- 
tance is  obtained by a smaller junction crossection, 
which results in greater thermal drift. The 1N4009‘~ 
are particularly resistant to heat damage.* IN4009’s 
are approximately 33 cents each in lots of 100. 

Tempera ture-drift compensation 
The forward voltage required to turn a junction 

diode on decreases with increasing temperature. 
This results in severe drift in the composite charac- 
teristic. in the uncompensated circuit, for a tempera- 
ture increase of 3OoC, each limiter channel turned 
on 20 mv too soon; after the tenth channel had 
turned on, the total drift error was 200 mv. Tempera- 
ture stabilization was achieved by placing diodes in 
the bias lines. When the temperature increases, these 
diodes produce less drop in the bias line, so the bias 
increases and compensates for the tendency of the 
series diodes to turn on sooner. The temperature 
compensation was designed empirically for one 
squaring circuit and found to work equally well on 
a second squaring network without special matching. 
Since the tern peratu re com pensat ion required diodes 
in the reverse bias lines, and since the first two diode- 
limiter channels were slightly forward biased to 
obtain the required accuracy near zero, offsetting 
positive and negative bias voltages were applied to 
these two channels to produce both temperature 
stabilization and net forward bias. 
‘The writer held a 25-w soldering iron against the glass at one 
end of the diode while observing the voltage drop at 2 ma for- 
ward current. After several minutes the voltage drop reached a 
new steady-state value. Both the anode and the cathode were 
so treated in an attempt to alter the room-temperature charac- 
teristic slightly. The diodes tested were not damaged, and their 
room-temperature characteristic was not altered appreciably 
( & O S  mv). 

Frequency-response equalization 
A 15 pf lead capacitor from the output of the 

absolute-value circuit to the network output (to a 
summing junction) reduced the multiplier phase 
error, but caused amplitude error with increasing fre- 
quency. A roll-off network consisting of another 
capacitor and a resistor in series connected from the 
absolute-value circuit output to ground corrected 
this amplitude error to about 100 Kc. Capacitors 
across resistors in the individual diode limiters were 
tried, but were not as effective. Phase shift measured 
with different amplifiers was not exactly the same, so 
a compromise phase compensation was used. 

An alternate and possibly better method of com- 
pensation would be to split the 5K feedback resistor 
into two 2.5K resistors with a 100 pf shunt capacitor 
to ground between them as shown in figure 9. 

ADJUSTMENT AND TESTS 

Breakpoint adjustment 
Four methods for accurate breakpoint adjustment 

were investigated. iterative d-c adjustment was used 
for adjusting the first squaring circuit, but it was too 
laborious for repeated use. A matching method was 
used to adjust al l  the other 14 squaring circuits re- 
quired for seven multipliers. In this method, the 
circuit being adjusted is  matched to another accu- 
rate square-law characteristic by subtracting the out- 
puts of both circuits. The two remaining methods 
use a “slow” analog computer and a repetitive an- 
alog computer, respectively. A ramp Y = kt is  gen- 
erated to drive the squaring network and a square 
Y’= (kt)*/10 is  generated and compared with the 
output of the squaring network to produce an error 
display. I t  was found difficult to obtain the desired 
accuracy by this m e t h ~ d . ~  

As a fifth method, an attempt was made to adjust 
an entire multiplier so that it multiplied 10 sin w t  
accurately by both 10 and -1Ov. i t  was found that 
this usually results in a badly misadjusted multiplier, 
which multiplies accurately only by 10 and -10. 

Adjustments which are sometimes included in an- 
alog multipliers (a d-c adjustment, and X adjustment, 

Y -3xP-@- --Y 

f igure 9-The 100-pf capacitor indicated is  optimum for the 
circuit shown for extending the 0.5’/0 error frequency of an 
ASTRAC II inverter from approximately 30 Kc to 300 Kc. 
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a Y adjustment, and a gain adjustment) were not 
found necessary, although a gain adjustment was in- 
cluded which trims the 5K feedback resistor of the 
output amp1 ifier. 

in the iterative d-c adjustment method, the output 
of a squaring network is conducted to the summing 
junction of an operational amplifier which has an 
accurate 5K feedback resistor. The input voltage to 
this squaring network is  then set equal to X=Y= 
1.000, 2.000, 3.000,. . ., 10.000 v consecutively, and 
the network's breakpoints are adjusted consecutively 
for -0.100, -0.400, -0,900,. . . , -10.000 v out of 
the amplifier. One breakpoint i s  adjusted for each 
input. For example, with 5.000 v in, the fifth break- 
point is adjusted for -2.500 v out. Interaction be- 
tween the breakpoints requires this sequential 
adjustment to be made many times before the char- 
acteristic converges for 2 5  mv accuracy. Also, about 
-3 mv of d-c offset was cancelled by another source 
(through a 5K summing resistor). Because of the large 
number of iterations required, this method should be 
avoided i f  possible. 

The most satisfactory method is  to match a new 
multiplier to one that is  already accurately adjusted. 
A complete multiplier can be adjusted in this rnan- 
ner in about 15 minutes. Setting the input to the new 
multiplier for X=Y=IO sin ut and -X=-Y=-lO 
sin ut (for f z 40 cps), then the output, -10 sin' ut, 
will be generated entirely by its "positive" circuit. 
(In the "negative" circuit, the inputs will sum to zero 
at the summing resistors.) Setting the input to the 
reference multiplier equal to X=-Y=IO sin w t  

and -X=Y= -10 sin ut, its output, 1O'sin ut, will 
be generated by its negative circuit. The outputs of 
the two multiplier networks can be summed at the 
same summing junction and should cancel. The 
breakpoints of the positive circuit of the new multi- 
plier are then adjusted for minimum error. The nega- 
tive network is next adjusted by interchanging the 
Y and --Y inputs to the two multiplier networks. In 
practice, it was possible to match the squaring net- 
works within 2 5  mv and typically to 5 2  mv. 

Tests and results 
The multiplier was tested for static accuracy, 

thermal drift, and frequency response. Full-scale sine 
waves of various frequencies were multiplied by 
positive and negative constants and also zero. The 
multiplier output was then summed with an appro- 
priate input to produce an error display. It was found 
that the static accuracy was approximately - + I O  mv 
at 25O C. Also, multiplier error caused by misadjust- 
rnent of the & I O - v  reference supplies was ap- 
proximately equal to this adjustment error. The 
photographs in figure 10 show the error at various 

frequencies (1 Kc, 5 Kc, and 10 Kc) for XY/lO=(IO) 
( I O  sin ot)/lO. The phase compensation approxi- 
mately doubled the 0.5'/0 of half-scale error fre- 
quency, extending it to over 10 Kc. Table 1 shows 
the dynamic error at various frequencies. This error 
is caused by a combination of phase shift in the arn- 
plifiers and nonlinear error in the squaring networks. 

la1 1 K r  

Ihl 5 K r  

(c) 10 Kc 

Id) l O K c  

Figure 10- In (a), (b), and (c) error photographs show the multi- 
plier error in multiplying 10 times 10 sin 2 d t  for f = 1 Kc, 5 Kc, 
and 10 Kc. The scale i s  50 mv/cm or 0.50n/o-of-half-scale/cm. 
(c) Clearly shows dynamic error is less than rt0.5O0/o-of-half- 
scale at 10 Kc. In (d) a dual trace photograph shows the input 
and output of the multiplier for a *lo-v 10-Kc square wave 
multiplied by Y = -10. Different scale factors were used so that 
the two wave forms could be distinguished (the input i s  shown 
at 10v/cm and the output at 5 v/cm). 



Discussion 
Measured specifications are presented in table 1. 

The temperature stabilization by the diodes in the 
bias networks makes i t  incorrect to vary the reference 
voltages to obtain a variable denominator in XYIV. 
The multiplier can be built and aligned by a reason- 
ably experienced technician (undergraduate engi- 
neering student) in about 20 working hours. The cost 
for components i s  about $90 per multiplier, the major 
part of this cost being $60 for trimmer potentiom- 
eters. The adjustment of the multiplier is easy, once 
one properly adjusted squaring circuit is  available for 
matching. With a convenient setup, i t  takes about 
15 minutes per multiplier. 

As to possible improvements, as a price of the low- 
impedance wideband design, the multiplier can draw 
up to 17 ma from each driving amplifier because the 
summing resistors are so small. 2K summing resistors 
would probably be satisfactory and would reduce the 
load on the driving amplifiers to about 7.5 ma maxi- 
mum. The use of 2K summing resistors would give 
approximately a 5-v swing out of the absolute-value 
circuit. (The maximum voltage out of the absolute- 
value circuit at present is  approximately 7.5 v.) With 
a 5-v swing, the breakpoint spacing would be 0.5 v. 
This 0.5-v spacing would result in an increased over- 
lapping of the breakpoint adjustments. In the writer's 
opinion, such overlapping might be about optimum 
for accurate curve fitting, although it would make 
the circuit more sensitive to thermal drift and more 
difficult,to adjust. 

A second disadvantage i s  the use of 20 trimmer 
potentiometers. These are the most expensive and 
bulky components in the circuit. If the circuit were 
constructed with al l  Io/o resistors, perhaps adjust- 
ment o f  fewer breakpoints would be possible. Since 
only seven multipliers were built, however, it was 
not deemed worthwhile ordering special resistors for 
this purpose. 

Finally, the method usea for phase compensation 
was probably not as good as splitting the feedback 
resistor with a capacitor to ground. (Figure 9). 

If the ultimate in high-frequency performance were 
desired, however, four separate squaring circuits 
would be better than the absolute-value squaring cir- 
cuits, which have cascaded phase shifts from sum- 
ming resistors, absolute-value circuits, and limiter 
channels. In any case, the frequency response of the 
squaring circuits was Comparable to that of the am- 
plifiers used. 
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Table 1 - ASTRAC II multiplier specifications 

Static accuracy ?0.20% of half-scale from 15 to 40' C, aO.lO% at 25' C 
Thermal drift ................................. .Less than 0.7 m v / T  
Dynamic error 

XY/10= (0) (10sin 2 d t )  

0.1 0.10 0.1 0.10 
1 .o 0.10 1 .o 0.15 

10.0 0.20 10.0 0.50 
50.0 0.80 50.0 1.50 

100. 1.30 loo. 2.50 

XY/lO= (10) (10sin 2a101'10 
 KC) E ( - t %  of half-scale) &Kc) E(+-% of half-scale) 

Driving current required. . . . . . . . . . . .  .17 ma from each driving amplifier 
(See figure 4 for special low-current squaring inputs) 

Maximum current to summing junction of output amplifier. ...... . 2  ma 
Input voltage range ........................................ r l O v  
Reference supplies .......................... r lO.MX)vat 4 ma each 

Table 2 - Requirements for high-frequency performance 

1. Effects of stray capacitance were minimized by using low impedance 

2. Diodes with low capacitance and fast turn-off time were used (1N4009). 
3. Catching diodes to reduce the effects of diode capacitance were used. 
4. The frequency response of the completed multiplier was improved by 

adding phase lead to compensate for phase lag in the output amplifier. 
5. Completely parallel limiter channels were used. These are less likely to 

cause phase shift than a series-parallel scheme. 

levcls. 

Table 3 - Requirements for high static accuracy 

1. The four summing resistors for each squaring circuit were matched to 
within 0.01%. 

2. The absolute-value circuit diodes were matched for equal forward volt- 
age drops 20.5 mv at 2 ma of forward current. 

3. The absolute-value circuit diodes were slightly forward biased for zero 
input. 

4. Ten segments were used for each squaring circuit, ;.e., ten parallel 
limiter channels were used. 

5. Potentiometer adjustments of the breakpoints to compensate for com- 
ponent tolerances were used. 

6. Diodes were placed in the bias lines for temperature stabilization. 
7. For drift-free zero error at zero i t  is best to have all channels with an 

"off" diode in the series path at zero. This prevents slight errors in the 
reference voltages from causing error at zero. 

8. A diode was placed in the first limiter channel so that the rounding of 
its characteristic improved the accuracy near zero. 

9. The squaring circuits were designed and adjusted as a unit, so the 
overall transfer characteristic takes into consideration nonlinearities in 
the absolute-value circuit and nonlinear loading of the summing 
resistors. 
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A Hybrid Analog-Digital Parameter 
Optimizer for ASTRAC I1 
Reprinted with minor revisions by the author from the Proceedings of the 1964 Spring Joint Computer Conference. 
Copyright @ 1964 by the American Federation of Information Processing Societies. 

by BAKER ADAMS MITCHELL, Jr. Electronic Associates, fnc. Princeton, New Jersey 

BAKER ADAMS MITCHELL was born in Columbia, Tennessee and 
received a B.S. at Duke University in Durham, North Carolina. 
Upon leaving Durham the leisurely pace of the South was re- 
placed by the extreme rapidity with which things are done in 
Tucson . . . particularly analog computation. 

After two years of seeing that repetition is not boring when 
done at 1 Kc rates, he returned to the East where he is presently 
working with the Advanced Study Group of EA1 at Princeton, 
New Jersey. 

The dimension of size has been added to his perspective, and 
one frequently hears him mumbling about 90 parameter opti- 
mizen! 

ABSTRACT 
A new automatic multiparameter optimizer for iter- 
ative differential analyzers employs sequential ran- 
dom parameter perturbation. The nominal parameter 
point changes whenever the random perturbations 
improve the system performance measure. Binary 
counters operate simple digital-to-analog converters 
to implement parameter storage, multiplication, and 
step-size changes. All-digital logic yields different 
types of random perturbations, viz., simple random 
walk, random walk with reflecting or absorbing bar- 
riers, and various types of correlation over successive 
perturbations. 

I NTRO D UCTl O N  
This paper describes an optimizer designed to find 
system parameter combinations which optimize a 
functional, f ,  such as 

(1 1 

(2) 

(3) 

are state and control variables depending on the un- 
known parameters a,, . . .,a,, in accordance with the 
system equations 

(4) 

The new optimizer i s  designed to work with a fast 
all-solid-state iterative differential analyzer (ASTRAC 
11) which is  capable of producing complete solutions 

T 
F(a,, . . .,a,) = J [f(t) + u2(t)Idt 

y(t) = y(t,a,, . . ., a,) 
u(t) = U(t,a,, . . .,a,) 

0 
where 

i,= f&,, . . ., yk; u,, . . ., urn; t) 

y,(t) and the corresponding values of the perform- 
ance measure f(a,, . . ., a,,) for up to 1000 new param- 
eter combinations per second., 

To simplify optimizer logic and memory require- 
ments in problems involving many parameters, we 
simultaneously implement random perturbations2 on 
a l l  parameters a, and step to the perturbed point 
whenever the perturbation yields an improvement in 
the performance measure F(a,, . . ., a,,). 

Simple all-digital logic permits implementation of 
different sequential optimization strategies, includ- 
ing correlation between random-perturbation vec- 
tors and step-size changes depending upon past 
successes and failures. The analog integrator/multi- 
pliers commonly used to set system parameters have 
been replaced by simple, reversible binary counters 
driving D/A converters3 for simplified design and im- 
proved re l iab i l i t~ .~ The principle of the optimizer is 
shown in the block diagram of Figure 1. 

DETECTOR 
SYSTEM 

EQUATIONS 

OPTIMIZER 
LOGIC 

Figure 1 - Optimizer,Block Diagram 
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Figure 2a shows the parameter-space path over 
which a conventional deterministic system would 
optimize a simple two-parameter system. Starting 
with a trial set of parameters O a f ,  the conventional 
optimization logic employs the results of successive 
differential analyzer runs to obtain succeeding pa- 
rameter values 

rfft=r-lai + rnai (5) 

which successively improve rF=F(‘af , .  The 
most frequently used method employs n trial steps 
to compute approximate gradient components AF/ 
A(Y in each parameter direction; these gradient com- 
ponents are then stored and used to compute the 
optimal correction na, for a working step, or for a 
series of working steps in the same direction.8 

Such deterministic methods require complex logic 
and storage. Although they may converge well for 
favorable performance functions F(al, .  . .,a,), they 
may “hang up” on ridges or in canyons of the multi- 
dimensional landscape of the performance measure 
d ~ m a i n . ~  Furthermore, if the performance measure 
contains discontinuities, nonlinearities, or large 
higher-order derivatives with respect to the param- 
eters, our information of past performances wil l be 
of little value in determining succeeding steps; thus 
the step-size may have to be reduced to such a de- 
gree that convergence to the optimum is extremely 
time-consuming. 

Figure 2b shows how a pure random-perturbation 
scheme might optimize the same function. Here, hi 
may be positive, zero, or negative with equal proba- 
bility, and the nominal parameter point is moved as 
soon as the first improvement in the performance 
function occurs. No attempt is made to affect future 
perturbations by past results or gradient methods. 

On the other hand, if perturbations are to be cor- 
related with past successes or failures, then the opti- 
mization path might appear as shown in Figure 2c. 
Such a scheme causes future increments ai to favor 
the direction in which past improvements in the per- 
formance function were made. Notice, however, that 
we still do not require computation of individual 
gradient components, as in deterministic gradient 
optimization schemes. Hence, logic and memory re- 
quirements are reduced. 

A feature of schemes b and c is  that, if the result of 
adding the last set of increments (ACX~ and A a ,  in the 
cases shown in Figure 2) is  unfavorable, these incre- 
ments are subtracted before the next set is added. 
Thus each trial starts from the last “successful” point. 

Figure 2 -Typical Optimization Paths 

Motivation for Random Search 
The basis for all direct computer methods of 

parameter optimization i s  the same: Using a mathe- 
matical model or simulated system, we set the 
parameters to some trial values and compute the 
performance criterion. Then according to some rule, 
we reset the parameters to new values and again 
compute the performance criterion. This procedure 
is repeated until some desired degree of improve- 
ment i s  obtained. Naturally it i s  hoped that the rule 
for adjusting the parameters wil l take maximum ad- 
vantage of the knowledge gained from observing 
previous trials, and by SO doing achieve the optimum 
set of values for the parameters in the shortest POS- 

sible time. Usually, however, this rule depends solely 
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upon the knowledge gained from recent past trials 
and this is thought to be equivalent to using this 
knowledge to maximum advantage. 

If, however, the performance criterion contains 
discontinuities, nonlinearities, or large higher-order 
partial derivatives with respect to the parameters, 
our information of recent past behavior (actually a 
total or partial first derivative) may be of little value 
for the determination of successive steps; i f  the step 
size is too large, this information from the preceding 
step (or from a short forward trial step) wil l be totally 
misleading. Thus, with conventional, deterministic 
perturbation such as the gradient method, one may 
be forced to reduce the step size so much that con- 
vergence i s  excessively slow. For this reason i t  has 
been suggested that randomness be introduced into 
the search rule-perhaps in proportion to the ex- 
pected severity of the discontinuities, nonlinearities, 
etc., present in the cost function domain. 

In reality, i t  may be difficult to make any reliable 
prediction concerning the behavior of the perform- 
ance function. Even with reasonably well-behaved 
performance functions, it can be quite difficult to 
foresee “ridges,” “temporary plateaus,” “saddle- 
points,” and other features which render deter- 
ministic rules far from foolproof. 

Reference 5 goes further into such motivation for 
random-search methods. Figures 3 and 4 illustrate 
situations in which prediction is  likely to be difficult. 

Figure 3-Function with 
Discontinuities 
The function defined 
represents a system 
composed by particu- 
lar percentages of each 
of the four compounds 
shown at the corners. 
C o n t o u r  l i nes  are 
drawn in order to  in- 
dicate values of a prop- 
erty on the system. The 
heavy lines are lines of 
discontinuity in slope.5 

START 

Reduce 
n,=N,? COMPUTE 

STOP 

Figure 5 - Flow Diagram for a Typical Optimization Routine 

PRINCIPLES OF OPERATION 
Most of the optimization strategies proposed here 
can be based on the flow chart of Figure 5 .  The 
operation common to a l l  the various strategies con- 
sists of incrementing all parameters simultaneously 
by individual random increments + A a ,  -Aa, or 
zero; the common magnitude A a  (step size) of these 
increments is  subject to a separate decision. The 
term success wil l be used to indicate that the incre- 
mented set, a1 + Ami, has yielded a more favorable 
value for the performance measure than was ob- 
tained with the unincremented set, ai. A failure wil l 
mean that the incremented set yielded a less favor- 
able value for the performance measure, in which 
case the failing increment is subtracted from the 
parameter before a new increment is  added. Succes- 
sive failures and successes can be counted and used 
to decide when an increase or decrease in the step 
size might be advantageous. A binary noise genera- 
tor’ together with digital correlation logic decides 
what the sign of each new increment will be. Thus, 
the overall effect of the perturbation scheme i s  an 
n-dimensional random walk. 

c-- Figure 4 - Function with Saddle Points 
This sketch of a dynamic vibration absorber shows the ampli- 
tude of vibration F plotted over the frequency range w for values 
of the parameter al. The effects of only one of the three param- 
eters, al, a,*, a3, of the actual system could be drawn. A possible 
criterion for an optimum absorber i s  to require that the maxi- 
mum amplitude of vibration yielded by a particular set of pa- 
rameter values, al, a2, a3, be minimum over the frequency range 
of interest.5 
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THE ASTRAC II SYSTEM 
The dynamic system and the performance criterion 
are to be simulated on the Arizona Statistical Repeti- 
tive Computer, ASTRAC II, although ASTRAC I 
served for preliminary studies. ASTRAC I I  is a +IO- 
volt, all-solid-state iterative differential analyzer ca- 
pable of iteration rates of 1 Kc as well as real-time 
computation. The first 20-amplifier section of AS- 
TRAC II i s  to be completed in the fall of 1964. 

The analog section has a large conventional-ap- 
pearing patchbay. 20-Mc transistorized amplifiers 
mounted in shielded cans plug directly into the rear 
of the patchbay without any intervening wiring. The 
analog section will comprise sample-hold memory 
pairs, comparators, analog switches, switched inte- 
grators, diode quarter-square multipliers, and diode 
function generators. 

Timing and logical control is furnished by the 
digital section, which provides timing pulses, integra- 
tor RESET pulses, and sampling pulses. The digital 
section has its own patchbay with removable patch- 
boards for implementing various logic functions. 
Patchable gates and flip-flops are used in conjunc- 
tion with the prewired timing and RESET circuits. In 
view of the amount of logic involved in the opti- 
mizer, however, it was thought best to build i t  as a 
separate digital section with its own removable 
patchboards, devoted to this purpose. The complete 
ASTRAC II optimizer wil l not only implement the 
sequential random search optimization described 
here, but wil l permit comparison with deterministic 
optimization schemes. 

Optimizer Logic 
The digital logic of the optimizer i s  subdivided into 

basic functional units whose inputs, outputs, and 
control points are wired to its patchbay (Figure 6). 
With a different prepatch panel, these components 
are also available for other uses besides optimization. 
In particular, the parameter-setting circuits wil l also 
serve for experiments with deterministic optimiza- 
tion schemes. 

The functional units are built of commercial plug- 
in logic cards interconnected on racks with wire- 
wrap terminations for ease of modification and 
expansion. 

The resistor networks and switches comprising the 
D/A multipliers are mounted in shielded plug-in cans 
adjacent to the operational amplifiers behind the 
analog patchbay. Shielded digital control lines con- 
nect each D/A multiplier to the optimizer patchbay. 

Figure 6-  Photograph of Optimizer 

-29- 

Hybrid Analog-digital Noise Generator 
ASTRAC II employs a new noise generator" pro- 

ducing pseudo-random maximum-length shift-reg- 
ister sequences at any desired clock rate up to 4 
Mc. We may obtain either a single pseudo-random 
sequence repeating after 33 million bits, or four un- 
correlated sequences one-fourth as long. 

Success-failure Indicator 
Essentially, the function of this circuit (Figure 7) ic 

to compare the value of the best performance meas. 
ure, L F ,  obtained to date, with the performance 
measure just yielded by the last computer run, ' F .  

The flip-flop output U ,  controls the operation of 
the second sample-hold and at the same time sets 
flip-flop 7 whose output, S, indicates to the digital 
optimization logic whether or not a success was 
obtained with the last set of incremented parameters. 
If the last run was a failure, (;.e., ' F  < L F  for maximi- 
zation), then U ,  and S remain zero, and LF i s  still held 
as being the best value. If, however, the last com- 
puter run was a success ('F > then U, becomes 
"1," which causes the second sample-hold to take 
on the value just obtained. 

If i t i s  known that F will always be monotonically 
increasing during the latter part of the COMPUTE 
period, Switch 3 and U ,  need not be used. 

. . . . . . . 

. .  



R -  

PARAMETER SETTING 
The flexibility needed to implement a variety of dif- 
ferent optimization-logic schemes while maintaining 
simplicity, reliability, and low cost is achieved by 
using a unique method of parameter setting. 

'* 

3 8 5 

K I I 
u, n 
u2 

us 
If Success occurs 

5 1 
Figure 7 - Success-Failure Indicator 

Master Clock 
The Master Clock provides al l  t im ing  pulses 

needed for sequencing logic operations throughout 
the digital optimization routine. I t  consists of a four- 
bit Gray-code counter driven by a I -Mc pulse, C,, 
from the differential-analyzer digital control unit. C, 
i s  gated t o  the counter dur ing the differential- 
analyzer RESET period. With the exception of  the 
Success-Failure Indicator circuit, where timing i s  un- 
der control of the differential-analyzer, no optimiza- 
tion logic is  performed during the COMPUTE period 
of the differential-analyzer. 

The sequence of the timing pulses from the Master 
Clock is shown in Figure 8. 7, as shown, occurs only 
after failures, i.e., S = I .  If S=O, S = I  throughout 
the RESET period. A success or failure also causes nS 
or nF to  occur (Figure 15). 

- 

4 I I 1 

BC 

"I. *, 

NN 

p, 

M, 
C 

Figure 8 - Pulse Sequence from Master Clock 
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Binary-counter Operation 

Referring to Figure 9, the binary up-down counter 
increments whenever a pulse appears on the "I" line. 
The right-left shift register contains zeros in all ex- 
cept one of its stages, and the position of this "1" 
selects the stage of the binary counter which is to 
receive the " I "  pulse. By controlling the D/A rnulti- 
pliers, the counter has then increased or decreased a, 
by an increment .hi; the magnitude Lai i s  deter- 
mined by the position of the "1" in the shift register, 
and the sign (+ or -) i s  determined by the logic 
level on the UD line (l=count up, O=count 
down). 

I -31- 

Table 1 - U-L-D Probability Distributions 

U-1-D Digital Logic 

The U-L-D (UP-LOCK-DOWN) Logic is composed 
of two sections: a central U-1-D Selector Circuit (Fig- 
ure l o a )  and a U-L-D Memory associated with the 
binary counter for each parameter (Figure lob). 

The selector circuit accepts two uncorrelated ran- 
dom bits IN,,  IN, obtained from the ASTRAC I I  noise 
generator. Depending on the interconnections of the 
selector-circuit gates C,, C,, G:%, G, to gates U, L, D, 
the gate outputs U,, L,, D, wil l have different joint 
probability distributions as shown in Table I. 

U 
L 
D 

U 
D 
L 

G l  
' I 4  'I1 '14 Gze Ga 

c4 
Gl, Gp ' In  0 at2 

0 1 0 61, C,, G,, G4 
'I4 'I4 *I2 

0 '14 'I4 

0 'I2 ' 12  

'14 0 S I 4  

0 '14 $14 
0 0 1 

'4 

Effectively, these 
distributions can be 
obtained by placing 
a logical "1" 
on the RC line. 

-X 

I *I 
(UP, ZERO, OR DOWN) 
I 

Figure 9 - Parameter Setting 

From differential- 
analyzer setup 

-+X 

D/A converter/ 
multiplier 

1 
I 

To differential- 
analyzer 



RC A 

Figure 10a - U-L-D Selector Circuit Figure l ob-  U-L-D Memory Circuit 

The gate outputs, U,, Lo, Do, determine the states of 
the d-c set and reset level controls on the UP-DOWN 
flip-flops and the LOCK flip-flops of a l l  U-L-D Mem- 
ories (one for each parameter) simultaneously. The 
pulse M, from the Master Clock now first sets the 
U-L-D flip-flops of the f i rst  parameter to their proper 
states as determined by the first set of random bits 
‘N,, ‘N,. 

Next, the noise generators are pulsed again by the 
Master Clock (pulses NN) producing two new random 
bits, ‘N,, ,Nq, which determine a new set of states for 
the d-c set and reset level controls of the U-L-D Mem- 
ory flip-flops. Now, the pulse M, to the U-L-D Mem- 
ory of the second parameter sets i ts  UP-DOWN and 
LOCK flip-flops in accordance with ‘N,, ‘N,. The 
process repeats for the remaining parameters. 

U-L-D Memory 

Note that we shall require two decisions for each 
parameter. The LOCK circuitry decides whether alC 
is to be incremented or not incremented (”locked”). 
The UP-DOWN circuits decide the direction (up or 
down) of the increments Aa,, if any. We shall con- 
sider the UP-DOWN circuits first. 

If an UP-DOWN flip-flop i s  set (reset), a logical 
1 (0) will appear on the “UD” line to the binary 
counter, i f  S’=l. We now come to the LOCK deci- 
sion. If the LOCK flip-flop is  set or reset the incre- 
menting commands “C” and “BC” from the Master 
Clock wil l or wil l not carry through the gates on ”I” 
to increment the counters in the direction dictated 
by “UD.” 
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Correlation Circuit 
This circuit can be patched so as to introduce cor- 

relation between successive random perturbations 
according to some strategy selected to speed opti- 
mization. Suppose that the last set of increments suc- 
ceeded in improving the performance function. 
Assuming that the performance function is fairly well- 
behaved, the greatest chance for another success lies 
in weighting each parameter so that it will probably 
increment in the same direction as in the previous 
trial (strong positive correlation). By the same rea- 
soning, after a failure a strong negative correlation 
might be introduced. After either a failure or a suc- 
cess, i f  a particular parameter had been locked (;.e., 
its last increment was zero), then a probability func- 
tion giving equal weight to a l l  three states might be 
desirable for the next trial. 

Referring to Figure 11, the correlation circuit is 
patched as desired and senses the value of the last 
increment in each U-L-D Memory, starting with the 
first parameter. If is  positive, the RC line changes 
the selector gating so as to increase the chance of a 
positive A@, for the next run if the last run was suc- 
cessful. The reverse can take place i f  the last run was 
a failure, depending upon the correlation control 
"CC." 

If, however, A m ,  was zero, as indicated by the 
state of the LOCK flip-flop, then the correlation line 
RC is turned on or off with equal probability by a 
random-noise input. This entire process is  repeated 
for each parameter in turn, as they are sequenced 
by the pulses Pi from the Master Clock. 

T s  NOISE CC P.  ... P. 

I 1  I 

0 PTI M IZATl O N  STRATEG I ES 

1. Pure Random Perturbations 

Pure random perturbations are achieved i f  we pre- 
set the "1" in the shift register to gate the count pulse 
into the binary counter stage yielding the desired 
step distance, e.g., 1/2,1/4,. . ., 1/128. The noise gen- 
erator i s  connected directly to the SET and RESET 
level controls of the UP-DOWN flip-flop of each pa- 
rameter. During the analog RESET period, the noise 
generator i s  pulsed once for each parameter shortly 
before the sequenced pulse to the proper UP-DOWN 
flip-flop arrives. Thus, the UP-DOWN flip-flops se- 
quentially assume the successive states of the noise 
source. The count pulse, C, i s  then fed to all param- 
eters simultaneously. Hence, all parameters incre- 
ment by the same magnitude, but with random signs 
during each analog RESET period, executing a ran- 
dom walk in the perturbation scheme. 

With pulses S, S', and BC added to the U-L-D Mem- 
ory, the set of increments used in the preceding run 
can be subtracted from the counters prior to the ad- 
dition of increments for the next run. Thus, after a 
failure in an optimization run, the counters can be 
returned to the state which yielded the last success 
before making another search. 

2. Random Walk with Reflecting Barriers 

This scheme i s  exactly the same as the pure ran- 
dom walk with one additional operation. Prior to 
assigning a new set of signs to the UP-DOWN flip- 
flops, a pulse-possibly from a comparator in the an- 
alog system-to signify that a parameter has reached 
a barrier, can be gated to the U-L-D logic of the pa- 
rameter to be reflected, causing its UP-DOWN flip- 

~~ flop to complement and, later, to ignore the sign that 
is assigned to it by the noise source. In this manner, 
the parameter wil l have been reflected to its old 
position held two analog COMPUTE periods pre- 
viously. 

3. Random Walk with Varied Step Size 

This scheme also contains only one addition to the 
pure random walk. When it i s  desired to increase or 
decrease the step size-possibly after a certain num- 
ber of successive failures have been counted-one 
has only to insert the increase or decrease command 
(;.e., the counter output) into the shift-right or shift- 
left input of the shift register. This gates the count 
pulse either to the next higher or next lower param- 
eter counter stage. The noise generator then assigns 

I 1  . 
s Negative correlation after failure polarities to the UP-DOWN flip-flops, and the pa- 

0 N o  correlation For this purpose, the optimizer contains two SUC- 

r PositlvecorreLatlOn after success rameters are incremented by the new step size. 
1 Negative and positive correlation 

Figure 11 -Correlation Circuit cess-failure counters, 
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4. Correlated or Biased Random Walk 

Since two independent noise sources are available, 
one can arrange P (N, N,) = '14, P (Nl&) = '/4, P (N, 
X i2) = '/4. These can combine to give P ( X )  = ' 1 2 ,  

or P(Y)  =3/4, where X= N,N, + NlG2, Y= NIN, + N l i ,  + fl,N,. There are three possible states for 
the U-L-D Memory: UP, DOWN, and LOCK. I f  a fail- 
ure occurred in the Up state, then after subtraction 
of the failing set of increments, it would be desirable 
to assign weighted probabilities which would be 
more likely to result in the next state being Down. 
The probability distributions which can be pre- 
patched are listed in Table 1. Likewise, if a success 
occurs in the Down state, the next assignment of 
states could be weighted on the same basis. 

This strategy can be combined with step size var- 
iations implemented with the aid of the success/ 
fai I u re counters. 

TESTS 
The following tests were carried out using the opti- 
mizer in conjunction with ASTRAC I ,  a -+IO0 volt, 
lOO-run/sec iterative differential analyzer. 

In order to generate performance measures with 
the precise characteristics desired, only algebraic 
functions F(al, a,) were used for quantitative evalua- 
tion of the various optimization strategies. For prac- 
tical use in optimizing dynamic systems, the opti- 
mizer setup would be entirely unchanged, except 
that the function F(al,a,) would be generated as 
samples at the end of a differential-analyzer run. 

The slow repetition rate of 10 runs/sec was em- 
ployed only for recording purposes. 

Functions Optimized 

performance functions. 
Initial tests were made with two different types of 

Minimization of functions of the general type 

was carried out. The parameters a1 and a2 were 
allowed to vary over 5100  volts, and convergence 
of a,, a, was considered to be satisfactory when they 
were within 0.78 volt of their values which opti- 
mized F. 

The next experiment involved maximization of a 
function F(al, a?) exhibiting sharp ridges formed by 
the intersection of three planes as shown in Figure 
12a. The simulation (figure 12b) uses three amplifiers 
to form the three planes: Fl= -a1 + a,, F2=2a, 
- a?, F,= -1.5a, - a2 + 155.5. Extremely sharp 
intersections between the planes were formed by 
using high-speed "half-comparators." Thus, F= F,, 
where Fi 5 F ,  and i # j with i, j =  I ,  2 , 3 .  The pararn- 
eters were allowed to vary over +IO0 volts, and the 

Figure 12a - 
Optimization Problems 
on the Sharp Ridge 
of a Triangular Pyramid 

- & W  1 I 150K 50K 
300 

- 
1 I 150K 50K 

300 

-a, 

-(3/2)a2 

t 4 . 4  
250K 

Figure 12b- Ridge Simulation 

A /- 

Figure 12c- Optimization Paths on the Ridge of a Pyramid 

optimum point is  al =44.4 volts and a,=66.6 volts. 
Convergence was considered to be satisfactory when 
F was within 0.5 volt of the maximum. 
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Strategies Employed 

Parameters were allowed to step only after suc- 
cessful runs, i.e., unsuccessful parameter changes 
were subtracted out. 

Various types and degrees of correlation between 
successive parameter runs were tried. (See section on 
Correlated or Biased Random Walk, above.) 

The step size,  CY, was increased by a factor of 2 
after N, consecutive successes and decreased after 
N, consecutive failures; N, and N, were varied. 

Results 

For the paraboloids (Equation 6), several thousand 
optimization trials were recorded using many varia- 
tions within the general class of strategies outlined 
above. 

As the eccentricity of the contours of constant F 
was increased, convergence was slowed somewhat, 
but not radically. In no case were more than 70 runs 
required for convergence. 

For the case, a=b=l, using no correlation in 
the perturbation scheme resulted in an average of 28 
runs required for convergence with a standard devia- 
tion of 9 runs. 

The most favorable step-size variation strategy was 
to increase ACY after 2 successes and decrease A a  
after 2 failures. 

The initial points of "al, "a2 were always kept at 
the extreme of their ranges and only a slight decrease 
in convergence-time was noted as the initial point 
was placed closer to the optimum. 

The particular ridge (Equation 7; Figure 12a) to be 
discussed here is  one expressly designed to present 
the greatest difficulty to the optimizer. Referring to 
Figure 12a, it i s  seen that improvement is quite diffi- 
cult i f  the parameter point falls close to the ridge. 
Had the sides not sloped so steeply, or had the ridge 
been oriented differently with respect to the param- 
eter axis, the optimizer would have found converg- 
ence mote natural. 

The optimization of this function without step 
size changes i s  shown in Figure 13a (N, versus time, 
a, versus time); this corresponds to path A in Figure 
12c (N, versus a,). Note that the parameter point fol- 
lowed the direction of greatest improvement until 
it reached the ridge; then both parameters were 
forced to zigzag up the ridge to the peak. The step 
size was 1.56 volts, and convergence required 1800 
runs. In Figure 13h, the (r, counter complemented at 
the beginning of both trials No. 1 and No. 2. Thus, i t  
was not necessary to climb the longest ridge. The 
paths converged more quickly up the shorter ridge 
(path B in Figure 12c). This favorable possibility is  
not present in ordinary gradient techniques. Path A 

- 

1 division = 5 seconds 

1 division = 5 seconds 

Figure 13 - Ridge Optimization 

in Figure 12c is  most nearly like a path resulting from 
conventional gradient techniques. 

Figures 14d and 14b show a series of correlated 
random searches with step-size variations employed 
in the strategies. The optimizer is not confined to 
merely zigzagging slowly up the ridge, but can tra- 
verse great distances while searching for improve- 
ments. Correlation improved convergence time 
somewhat, but only when weak positive correlation 
after successes was used. For 45 trials using this cor- 
relation, the average time to converge was 73 runs 
if the step-size was decreased after 2 failures. Other 
types of correlation slowed convergence by 10-20 
per cent. 

For comparison note that an optimizer going di- 
rectly in a straight line to the optimum point would 
require 106 steps if a fixed step size of  1.56 volts 
were used. 
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c Figure 15 - Gray-Code Counter Circuit 

n il tx p RESET INHIBIT 

” 

APPENDIX I 
The following units are contained in the optimizer 
digital section and/or are wired to the optimizer 
patchbay. On the drawings, a small circle on the end 
of  a wire indicates a patchbay termination. 

1. Three 4-bit Gray-code counters. One of these 
counters has a free-running multivibrator for 
the input. This counter is used exclusively for 
sequencing operations throughout the logic 
scheme subroutine, e.g., the analog RESET 
period. The remaining two Gray-code counters 
have their flip-flop outputs adjacent to two 
gates on the patchboard. These may be patched 
to yield outputs after any preset number of 
input pulses. These counters may reset them- 
selves or may be reset externally (Figure 15). 

2. One 8-bit right-left shift register. The d-c set 
and reset lines, along with the set and reset 
outputs, appear on the patchboard for parallel 
drop-in on command. Also the set and reset 
level controls for the first and last flip-flops are 
on the patchboard, thus permitting operation 
as a ring counter. Four inputs are provided for 
shifting in either direction (Figure 17b). 

3. Four 8-bit up-down binary counters. The d-c 
set and reset lines, along with the set and reset 
outputs appear on the patchboard for parallel 
loading. A gated complement input for each 
flip-flop is brought out, allowing the counter 
to be stepped at any stage. A flip-flop with as- 
sociated gates permits both pulse and level con- 
trol of the up-down lines (Figure 17a). 

4. Four 8-bit D/A multipliers. The digital control 
lines for the D/A multipliers (mounted in 
shielded cans behind the analog patchbay) are 
wired to the digital patchbay. Each set of lines 
i s  associated with one of the up-down binary 
counters (Figure 16). 

5 .  Two pseudo-random discrete-interval binary 
noise generators. The noise generator for AS- 
TRAC I I  i s  a 25-stage shift register with modulo- 
2 adders in feedback, generating a maximum 
length of 3 x IO’ random bits. This can be di- 
vided into two noise generators, each having a 
1.5 X 10’-random-bit sequence. The noise gen- 
erator shifts out a random bit when a pulse i s  
applied to the shift input. 

-X- 
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1 division = 0.5 second 

1 division = 1 second 

Figure 14- Ridge Optimization 

Stopping Conditions 

When the optimum value of f i s  unknown, defin- 
ing a stopping condition i s  subject to several factors. 
One such factor arises when we are not certain that 
only one peak exists in the domain of F. In this case, 
we would want to cycle the step size through its de- 
crease-increase scheme several times before stop- 
ping. Then a rescaling of the simulation might be 
desirable in case the initial range of the parameters 
was chosen too large. 

CONCLUSIONS 

While experience with this optimizer i s  still limited, 
it appears that its performance can compare quite 
favorably with conventional techniques. Better con- 
clusions can be made when this system i s  expanded 

to accommodate four parameters and the logic i s  
enlarged to permit implementation of conventional 
deterministic schemes, thus permitting a direct com- 
parison between random and deterministic methods 
for optimizing the same function. 

At present, however, the random techniques seem 
well able to handle cases in which the performance 
measure is  not well-behaved (e.g., the situations 
illustrated in Figures 3 and 4). 
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ASTRAC I1 DEMONSTRATION 
(Simulation Council Meeting, Tucson, May 1965) 

The ASTRAC II demonstration problem is shown 
in figure 1. i t  i s  interesting to note that the CRT dis- 
play of the correlator output curve (which looks like 
a continuous curve of the kind that might be gen- 
erated by a repetitive rep-op computer solution of 
a single set of equations with constant coefficients) 
is, in fact, a plot of 2407 individual computations of 
the impulse response cross correlation, each with a 
different T, displayed at the rate of one set per sec- 
ond. How’s that for speed? 
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Figure 1 - ASTRAC I1 demonstration: /rnpu/se-response measure- 
rnent by crosscorrelation of white-noise input and filter output. 
Machine successively computes 2047 correlation-function values 
and displays them once a second. Averaging time i s  100N psec. 


